Protein carbamylation is a hallmark of aging.
نویسندگان
چکیده
Aging is a progressive process determined by genetic and acquired factors. Among the latter are the chemical reactions referred to as nonenzymatic posttranslational modifications (NEPTMs), such as glycoxidation, which are responsible for protein molecular aging. Carbamylation is a more recently described NEPTM that is caused by the nonenzymatic binding of isocyanate derived from urea dissociation or myeloperoxidase-mediated catabolism of thiocyanate to free amino groups of proteins. This modification is considered an adverse reaction, because it induces alterations of protein and cell properties. It has been shown that carbamylated proteins increase in plasma and tissues during chronic kidney disease and are associated with deleterious clinical outcomes, but nothing is known to date about tissue protein carbamylation during aging. To address this issue, we evaluated homocitrulline rate, the most characteristic carbamylation-derived product (CDP), over time in skin of mammalian species with different life expectancies. Our results show that carbamylation occurs throughout the whole lifespan and leads to tissue accumulation of carbamylated proteins. Because of their remarkably long half-life, matrix proteins, like type I collagen and elastin, are preferential targets. Interestingly, the accumulation rate of CDPs is inversely correlated with longevity, suggesting the occurrence of still unidentified protective mechanisms. In addition, homocitrulline accumulates more intensely than carboxymethyl-lysine, one of the major advanced glycation end products, suggesting the prominent role of carbamylation over glycoxidation reactions in age-related tissue alterations. Thus, protein carbamylation may be considered a hallmark of aging in mammalian species that may significantly contribute in the structural and functional tissue damages encountered during aging.
منابع مشابه
Protein Carbamylation and Cardiovascular Disease
Carbamylation constitutes a posttranslational modification of proteins or amino acids and results from different pathways in vivo. First is the non-enzymatic reaction between isocyanic acid, a decomposition product of urea, and either the N-terminus or the ɛ-amino group of lysine residues. Isocyanic acid levels, while low in vivo, are in equilibrium with urea and are thus increased in chronic a...
متن کاملCarbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis.
BACKGROUND Carbamylation is a posttranslational modification of proteins resulting from the nonenzymatic reaction between isocyanic acid and specific free functional groups. This reaction alters protein structural and functional properties and thus contributes to molecular ageing. Many studies have shown the involvement of carbamylated proteins in diseases, especially in chronic renal failure a...
متن کاملChronic Increase of Urea Leads to Carbamylated Proteins Accumulation in Tissues in a Mouse Model of CKD
Carbamylation is a general process involved in protein molecular ageing due to the nonenzymatic binding of isocyanic acid, mainly generated by urea dissociation, to free amino groups. In vitro experiments and clinical studies have suggested the potential involvement of carbamylated proteins (CPs) in chronic kidney disease (CKD) complications like atherosclerosis, but their metabolic fate in viv...
متن کاملEvalution of In Vitro Effect of Flavonoids on Human Low-Density Lipoprotein Carbamylation
The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increase...
متن کاملEvalution of In Vitro Effect of Flavonoids on Human Low-Density Lipoprotein Carbamylation
The non-enzymatic carbamylation of low density lipoprotein (LDL) is a naturally occurring chemical modification of apolipoprotein B as a result of condensation between lysine residues and cyanate derived from urea. Carbamylated LDL is poorly recognized by LDL receptors and initiates different processes that can be considered proatherogenic. Thus, LDL carbamylation may contribute to the increase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 5 شماره
صفحات -
تاریخ انتشار 2016